

What's next?

Emerging next-generation immunotherapy in lung cancer

Natasha Leighl MD MMSc FRCPC FASCO Princess Margaret Cancer Centre

Toronto, Canada 12 September 2022

DECLARATION OF INTERESTS

Natasha Leighl (previous 24 months)

Institutional grant funding (University Health Network):

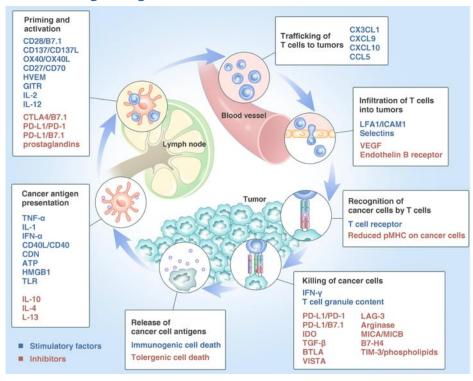
 Amgen, Array, Astra Zeneca, Bayer, BMS, Eli Lilly, EMD Serono, Guardant Health, Inivata, MSD, Novartis, Pfizer, Roche, Takeda

Honoraria (independent CME lectures):

Amgen, Astra Zeneca, BMS, Janssen, MSD, Novartis, Pfizer, Roche, Sanofi Genzyme, Takeda

Consulting fees:

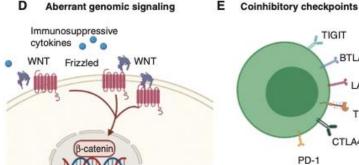
Bayer, GlaxoSmithKline, Puma Biotechnology

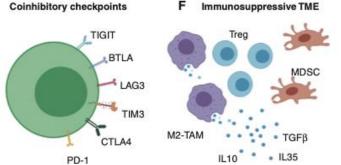


Objectives

- To highlight some emerging immunotherapeutics in lung cancer targeting:
 - Co-inhibitory receptors
 - Tumor Immune Microenvironment
 - Bispecifics
 - Antigen-directed therapy (very briefly!)

Cancer Immunity Cycle

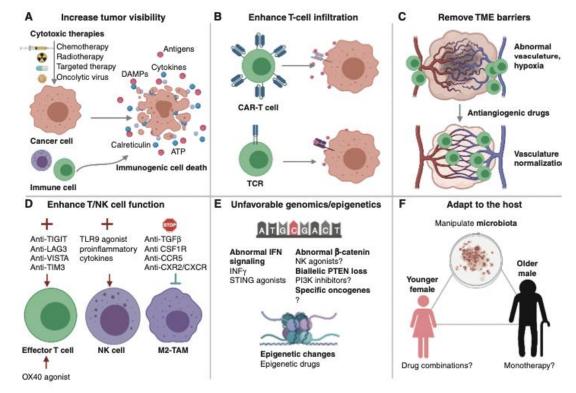

Resistance Mechanisms to Checkpoint Inhibition


Neoantigen loss Defects of the antigen processing Abnormal IFNy signaling machinery Gene silencing INFy receptor MHC-I with PD-L1 antigen JAK JAK Tumor cell Antigen Proteasome_ IFN genes Dedifferentiation

Impact of microbiome

Immune desert phenotype

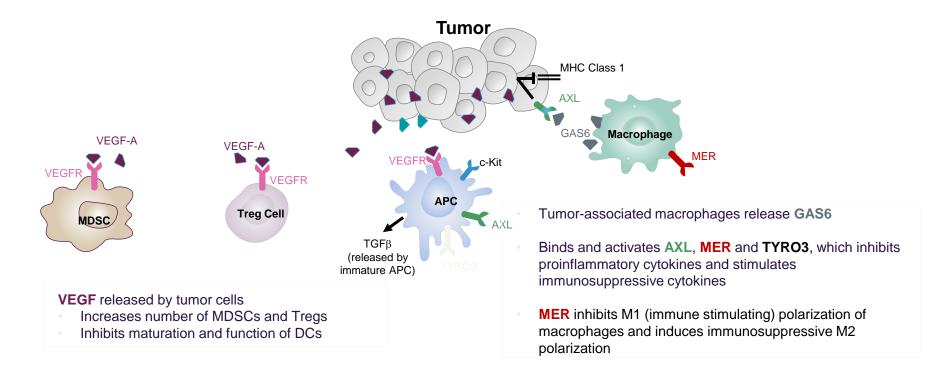
Differences by organ location



Aldea Cancer Disc 2021

Natasha Leighl

Overcoming resistance

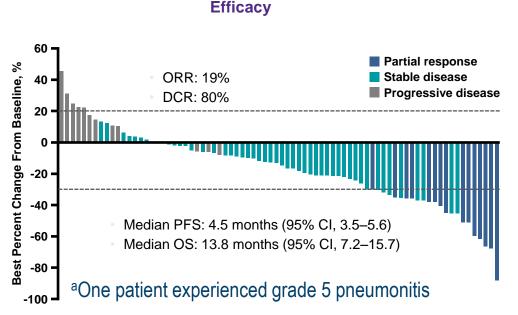


Potential for rational combinations of novel therapies

Increase tumor-specific Remodeling the TME and relieving immunosuppression T lymphocytes Steer the car ? Pave the road Vaccines VEGF T_{req} cells • IL-8 In situ vaccination MDSCs • TNF Adoptive T cell therapy • II -1 Vaccines, Targeting • TGFβ • IL-6 VEGF, TAM cell therapy bispecifics Tamper with inhibitory Act agonistically on Step on the activatory receptors receptors Release the • PD-1 • LAG-3 CD137 • IL-2 accelerator • CTLA-4 NKG2A • CD40 • IL-12 "brakes" • TIGIT • TIM-3 • ICOS • IL-15 • GITR LAG-3 NKG2A (TIGIT)

TAM RTKs can lead to an immune suppressive tumor microenvironment and Resistance

Treatment	Phase	TYRO3	AXL	MER	VEGFR	KIT
Sitravatinib ^{1,2}	3					
Cabozantinib ^{1,3}	3					
Bemcentinib ^{1,4}	2					
Ramucirumab	2					
Lenvatinib	3					
PF-07265807/ ARRAY-067 ^{1,5}	1					
INCB081776 ^{1,6}	1					
BA3011 ^{1,7}	2					
TP-0903 ^{1,8}	1					



Trials targeting TAM RTKs

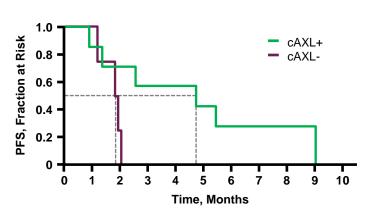
Trials	Phase	Treatment Arm(s)	Primary Endpoint(s)
MRTX-500 ^{1,2} NCT02954991	2	Sitravatinib + nivolumab	ORR
SAPPHIRE ³ NCT03906071	3	Sitravatinib + nivolumab vs docetaxel	os
NCT04921358 ⁴	3	Sitravatinib + tislelizumab vs docetaxel	OS and PFS
COSMIC-021 Cohort 7 ⁵ NCT03170960	1/2	Cabozantinib + atezolizumab	ORR
CONTACT-01 ⁶ NCT04471428	3	Cabozantinib + atezolizumab vs docetaxel	OS
BGBC008 ⁷ NCT03184571	2	Bemcentinib + pembrolizumab	ORR
NCT035221428	1	INCB081776 ± retifanlimab	AEs, Recommended Dose for Expansion
NCT046811319	2	BA3011 ± PD-1 inhibitor	ORR, AEs
NCT02729298 ¹⁰	1	TP-0903 monotherapy	DLT, AEs

COSMIC-021: Phase 1/2, Non-randomized, Open-Label Study of Cabozantinib in Combination With Atezolizumab in NSCLC

Safety

TRAEs (≥10%), n=81	Any Grade, n (%)	Grade ≥3ª, n (%)
Diarrhea	36 (44)	1 (1)
Decreased appetite	30 (37)	1 (1)
Fatigue	29 (36)	4 (5)
Nausea	28 (35)	2 (2)
Asthenia	24 (30)	5 (6)
Constipation	21 (26)	0
Pyrexia	20 (25)	0
AST increase	19 (23)	2 (2)
Hypertension	19 (23)	5 (6)
Vomiting	19 (23)	0
ALT increase	17 (21)	3 (4)
PPE	17 (21)	3 (4)
Hypomagnesemia	16 (20)	1 (1)
Weight decrease	16 (20)	3 (4)

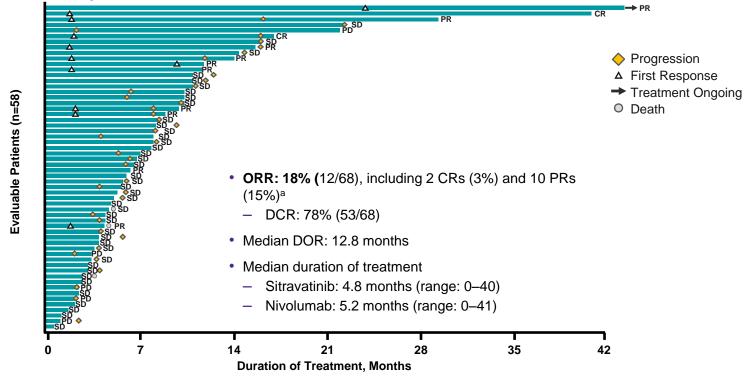
Neal JW, et al. ASCO Annual Meeting 2022


CONTACT-01: Phase 3 Study of Cabozantinib + Atezolizumab vs Docetaxel After Prior CPI and Platinum-Based Chemotherapy in NSCLC

Phase 3 Screening / Enrollment Randomized Combination Treatment vs Docetaxel **Key Eligibility Criteria** Cabozantinib 40 mg QD + **Study Objectives** (N=366)Atezolizumab 1,200 mg Q3W Metastatic NSCLC Primary endpoint: OS Progression on or following platinum-containing chemotherapy Secondary and anti-PD-1/L1 therapy endpoints: Docetaxel 75 mg/m² Q3W Excludes patients with a sensitizing PFS. ORR. DOR. EGFR mutation or ALK translocation PROs, safety

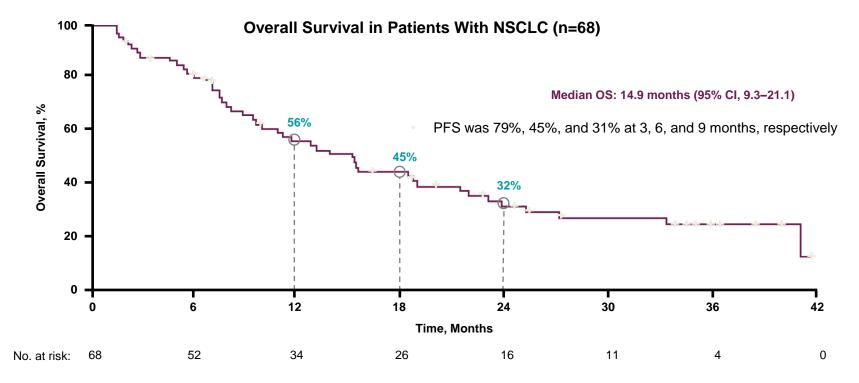
BGBC008: Phase 2, Non-randomized, Open-Label Study of Bemcentinib in Combination With Pembrolizumab in Advanced NSCLC

Cohort B Efficacy


Efficacy	cAXL+ª	cAXL-	р
PFS, months	4.73	1.87	0.066
ORR, %	14	0	-

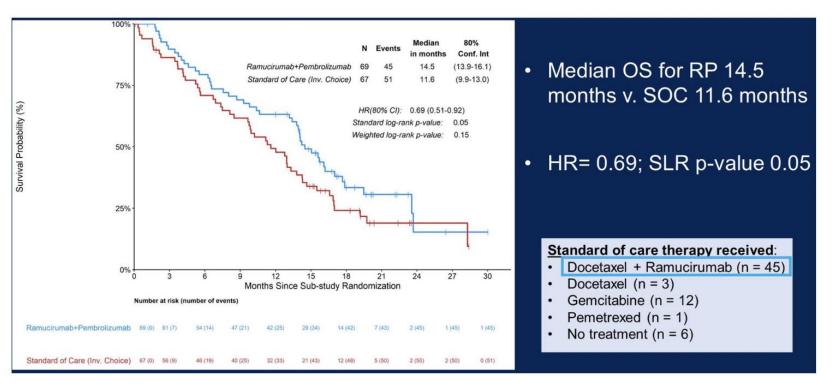
Cohort A and B Safety

TRAEs (≥10%)	Any Grade, n (%)	Grade ≥3, ^b n (%)
Diarrhea	20 (30)	0
ALT increase	19 (29)	7 (11)
AST increase	18 (27)	3 (5)
Asthenia	11 (17)	4 (6)
QT prolongation	10 (15)	2 (3)
Anemia	9 (14)	2 (3)
Blood creatinine increase	9 (14)	0
Fatigue	9 (14)	1 (2)
Nausea	9 (14)	0


 a Axl expression on membranes of tumor and immune cells. b No grade 5 TRAEs were reported Gabra H, et al. Next Gen Immuno-Oncology 2020

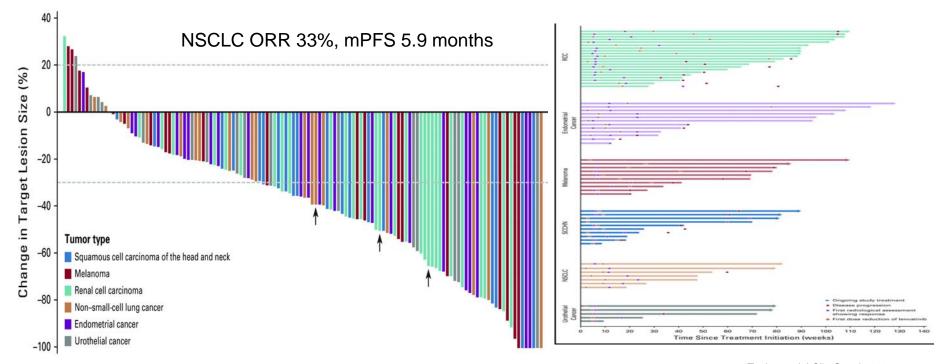
MRTX-500: Sitravatinib + Nivolumab in Patients With Non-Squamous NSCLC with prior benefit from checkpoint inhibitors - ORR, DOR

MRTX-500: Sitravatinib + Nivolumab in Patients who had Prior Clinical Benefit (PCB) on CPI but Subsequently Experienced PD


SAPPHIRE

Phase 3 Screening / Enrollment Randomized Combination Treatment vs Docetaxel **Key Eligibility Criteria** (N=532)Sitravatinib 100 mg QD + **Study Objectives** Nivolumab 240 mg Q2W or Advanced, non-squamous NSCLC 480 mg Q4W (n=266) **Primary** Prior PD-1/L1 inhibitor for ≥4 months endpoint: OS (prior anti-CTLA-4 therapy allowed) Progression on or following PD-1/L1 Secondary inhibitor in combination with or endpoints: Docetaxel 75 mg/m² Q3W following chemotherapy PFS, ORR, (n=266)Excludes patients with known driver safety mutations

NCT03906071.



Lung MAP S1800A (Prior platinum, CPI for >3 months)

Lenvatinib + Pembrolizumab Phase lb/II

LEAP-006 | NCT03829319

1L

Non-squamous NSCLC

Phase 3 | 726 participants

Placebo controlled | Randomized | International

Estimated study completion date I June 21, 2024

Arm 1: Pemetrexed + Platinum

Chemotherapy + Pembrolizumab + Lenvatinib

Arm 2: Pemetrexed + Platinum Chemotherapy + Pembrolizumab Endpoints:

Part 1: DLTs 3-wk | AEs 27-mo Part 2: PFS 24-mo | OS 60-mo

+ Placebo

LEAP-007 | NCT03829332

11L

NSCLC

Phase 3 I 620 participants

Active controlled | Randomized | International

Estimated study completion date | March 8, 2024

Arm 1: Lenvatinib + Pembrolizumab

Arm 2: Pembrolizumab + Placebo Endpoints: PFS 24-mo | OS 60-mo

LEAP-008 | NCT03976375

| ≥2L

 MSCLC

Phase 3 I 405 participants

Active comparators | Randomized | Open-label | International

Estimated study completion date | February 23, 2026

Arm 1: Lenvatinib + Pembrolizumab

Arm 2: Docetaxel

Arm 3: Lenvatinib

Endpoints: PFS 36-mo | OS 48-mo

Pembro + Lenva n = 309^a Pembro + Pbo n = 314^a OS Events, n (%) 149 (48.2) 137 (43.6)

Median^b (95% CI), mo 14.1 (11.4–19.0) 16.4 (12.6–20.6)
HR^c (95% CI) 1.10 (0.87–1.39)

P value^{d,e} 0.79744

PFS

Events, n (%) 202 (65.4) 217 (69.1)

Median^b (95% CI), mo 6.6 (6.1–8.2) 4.2 (4.1–6.2)

HR^c (95% CI) 0.78 (0.64–0.95)

P value^{d,e} 0.00624

ORR, % (95% CI) 40.5 (34.9-46.2) 27.7 (22.8-33.0)

Difference^f, % (95% CI) 12.8 (5.4–20.1)

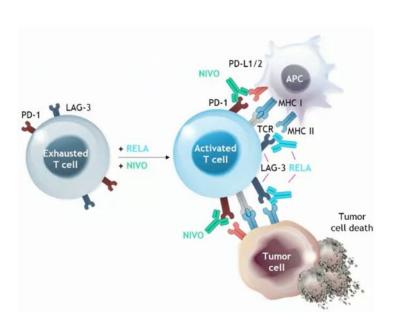
P value^{d,f} 0.00037

Taylor et al Future Oncol 2020; Csoszi et al ESMO 2021

Conclusions – Targeting TAM

Acquired resistance to CPI therapy is not yet fully understood, including how to define the patient population in clinical trials, and the molecular and cellular mechanisms

The development of an immune suppressive tumor microenvironment (TME) may be a contributing factor to acquired resistance


TAM receptor signaling can increase immunosuppressive factors in the TME

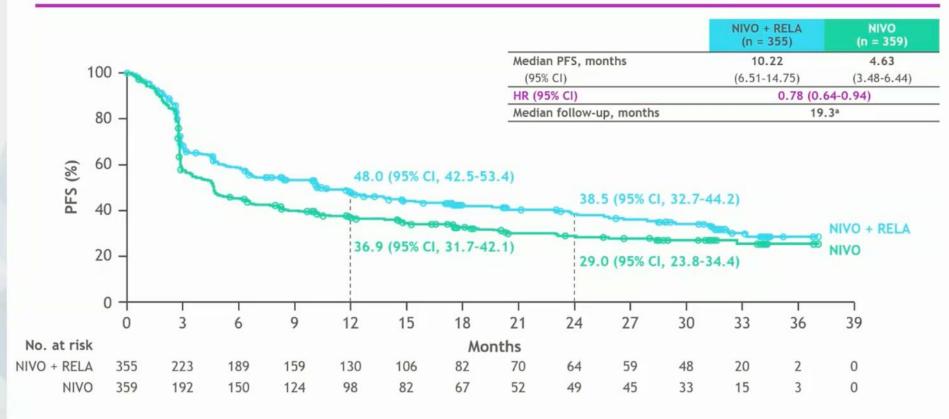
Targeting of TAM receptors, to shift the TME towards a more immunostimulatory state, is one approach under investigation to address acquired CPI resistance

Initial results with several TAM inhibitors, including sitravatinib and cabozantinib, have demonstrated promise in patients whose disease has progressed on or after CPI therapy

Lymphocyte activation gene 3 (LAG-3, CD223)

LAG3 expressed on activated T, NK, B, dendritic cells

Downregulates cell proliferation, activation


Helps maintain self tolerance, T cell exhaustion

Combination of LAG-3 inhibitor + PD-1 inhibitor active

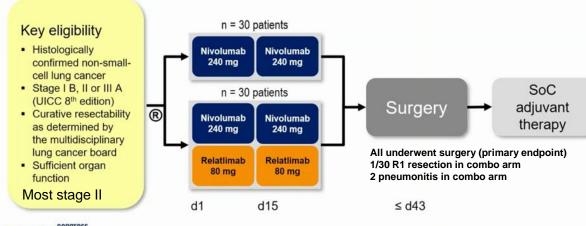
Approval for nivolumab and relatlimab in melanoma based on PFS benefit

Progression-free survival significantly improved with RELA+NIVO

Statistical model for HR and P value: stratified Cox proportional hazard model. Stratified by LAG-3, BRAF, and AJCC M stage. PD-L1 was removed from stratification because it led to subgroups with < 10 patients. Database lock date: October 28, 2021.

^aMinimum potential follow-up (time from last patient randomized to last patient, last visit) was 8.7 months.

A randomized phase II study of preoperative nivolumab plus relatlimab or nivolumab in patients with resectable non-small-cell lung cancer

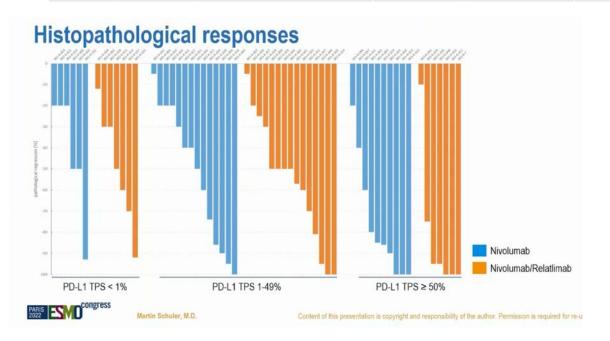

NEOpredict-Lung

Martin Schuler¹, Kristof Cuppens², Till Ploenes¹, Michel Vanbockrijck², Marcel Wiesweg¹, Kaid Darwiche¹, Alexander Schramm¹, Brigitte Maes², Balazs Hegedus¹, Hans-Ulrich Schildhaus¹, Hubertus Hautzel¹, Dirk Theegarten¹, Paul Baas³, Koen Hartemink³, Bert Du Pont², and Clemens Aigner¹

¹West German Cancer Center, University Medicine Essen, Essen, Germany

Study design

NEOpredict-Lung (NCT04205552)

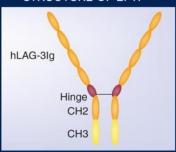

Martin Schuler, M.D.

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

²Jessa Hospital, Hasselt, Belgium

³Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, N

 ORR (RECIST version 1.1) 	10%	27%
 ORR (PERCIST version 1.0)* 	38%	38%
■ Complete/major pathological response**	27%	30%
■ DFS at 12 months	92% (70-98%)	91% (66-98%)
 OS at 12 months 	92% (70-98%)	100%



Peripheral blood effector T cells associated with major response

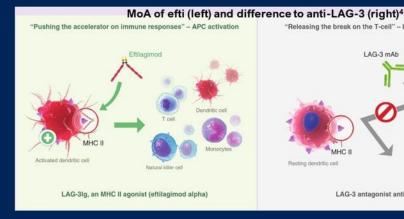
Next steps to increase relatlimab dose and explore receptor occupancy, LAG expression and more

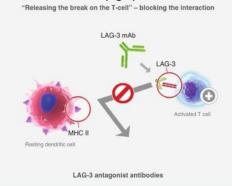
Eftilagimod alpha (efti) – soluble LAG-3

STRUCTURE OF EFTI4

- MoA: efti (figure, left) is a soluble LAG-3 protein (LAG-3 domains fused to human IgG backbone) targeting a subset of MHC class II molecules to mediate antigen presenting cells (APCs) and CD8 T-cell activation (figure below left).
- Difference to Anti-LAG-3: Efti does not bind to the LAG-3 on the T cell (figure, below right).
- Rationale: efti activates APCs, leading to an increase in activated T cells, potentially reducing the number of non-responders to PD-1/PD-L1 antagonists.
- In preclinical models, the antitumor activity of PD-1 antagonists was synergistically enhanced when combined with efti1.
- · Recommended phase II dose of 30 mg efti s.c. every two weeks was determined in phase I studies^{2,3}.

MoA: mechanism of action PD-1/PD-L1: programmed death-(ligand) 1

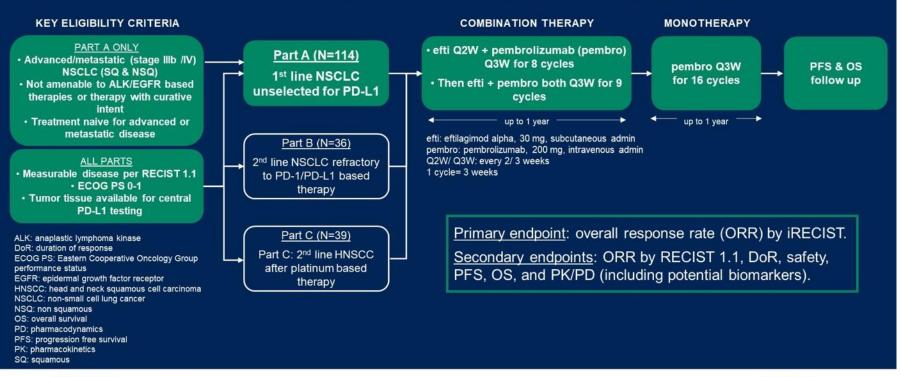

s c subcutaneous


¹ Internal data, Immutep, not yet published.

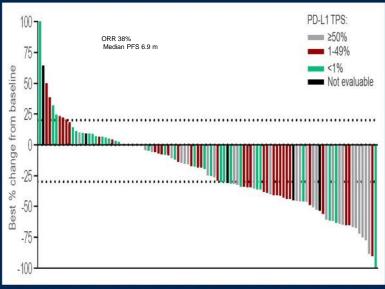
² Brignone C, Clin Cancer Res. 2009;15: 6225- 6231.

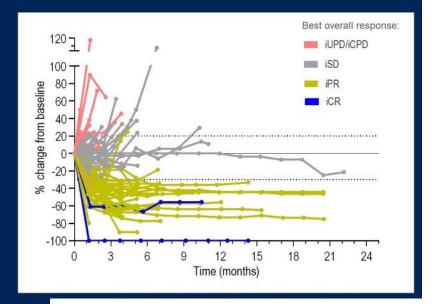
³ Atkinson V, J Immunoth Cancer, 2020; 8(2):e001681.

⁴ Dirix L. Triebel F. Future Oncol, 2019;15(17):1963-1973.



Trial Design - TACTI-002


TACTI-002 is a Phase II, multinational, open label trial with patients from 3 indications unselected for PD-L1.

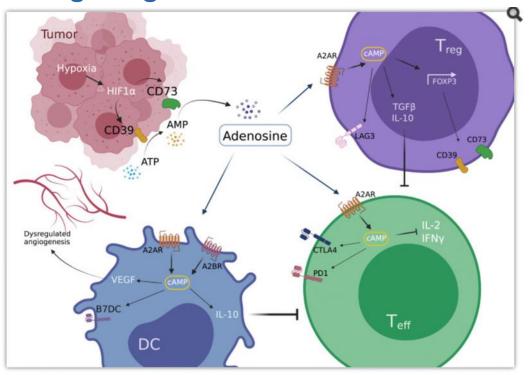

Efficacy – Waterfall plot¹ – TACTI-002

¹ all patients with ≥1 post-baseline CT scan n=103; ²PD-L1 assessed by central assessment (Dako kit), n=79; ³local assessment included due to non evaluable central assessment results, n=19; ⁴no results available for neither central nor local testing, n=5.

- 2 complete responses and 19.4% of patients with a target lesion decrease ≥50%.
- 68/103 (66.0%) of patients with a post-baseline assessment had a decrease in target lesions.

Fewer than 10% stopped for toxicity

LAG-3 Agents in Development


Name	Description	Target disease	Clinical trial*	Combination†
Relatlimab	Antagonistic Ab	Tumors	I (5), I/II (6), II (13)	PD-1
LAG525	Antagonistic Ab	Tumors	I (1), I/II (1), II (3)	PD-1, M-CSF, IL-1β, A2AR
BI754111	Antagonistic Ab	Tumors	I (3), Ia/Ib (1), II (1)	PD-1
MK-4280	Antagonistic Ab	Tumors	I (1), I/II (1), II (1)	PD-1
Sym022	Antagonistic Ab	Tumors	I (2)	PD-1
TSR-033	Antagonistic Ab	Tumors	I (2)	PD-1, Tim3
REGN3767	Antagonistic Ab	Tumors	l (1), ll (1)	PD-1
INCAGN2385-101	Antagonistic Ab	Tumors	l (1)	
MGD013	Bispecific to LAG-3/PD-1	Tumors	I (2), I/II (1), II/III (1)	=
FS118	Bispecific to LAG-3/PD-L1	Tumors	l (1)	-
XmAb22841	Bispecific to LAG-3/CTLA-4	Tumors	l (1)	PD-1
GSK2831781	Depleting Ab	Autoimmune diseases	I (2), II (1)	-
IMP321	Soluble LAG-3-Ig	Tumors	I (8), II (2)	PD-1, PD-L1, vaccination

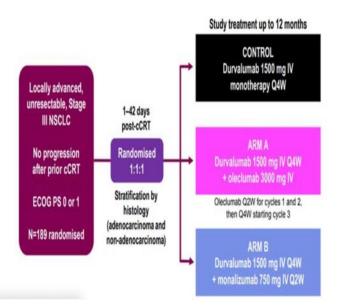
NCT04623775 Phase 2 randomized study of relatlimab plus nivolumab with chemotherapy versus nivolumab plus chemotherapy

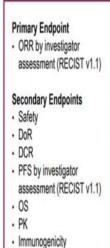
Targeting Adenosine

CD73 antagonists

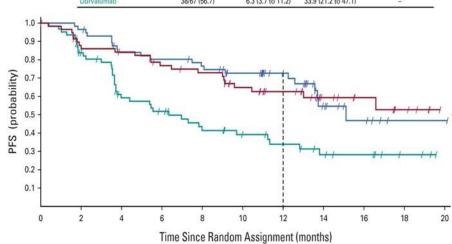
Oleclumab- MEDI-9447 Uliledlimab-Mupadolimab- CPI-006 SYM024 INCA00186 BMS-986179

CD39 antagonists

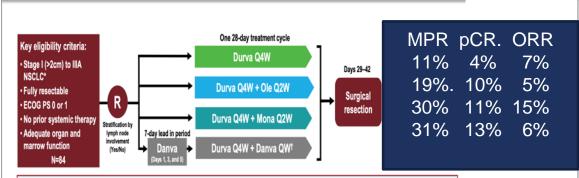

TTX-030 IPH-5201 SRF-617


A2AR antagonists

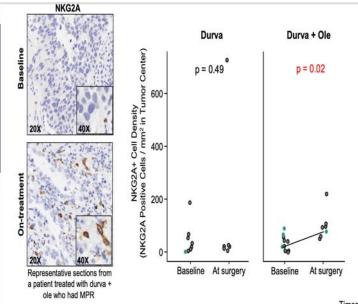
Ciforadenant- CPI-444 Imaradenant- AZD4635 Etrumadenant- AB928 Inupadenant- EOS100850



COAST (PACIFIC 9)

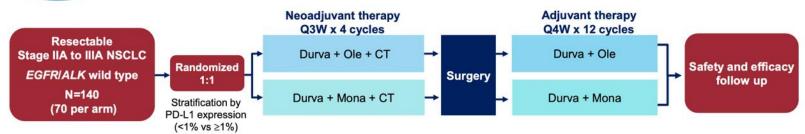


Treatment Arm	No. of Events/ Total No. of Patients (%)	Median PFS, Months (95% CI) ^a	12-Month PFS Rate, % (95% CI)	HR, % (95% CI)b,c
Durvalumab + monalizumab	21/62 (33.9)	15.1 (13.6 to NE)	72.7 (58.8 to 82.6)	0.42 (0.24 to 0.72)
Durvalumab + oleclumab	22/60 (36.7)	NR (10.4 to NE)	62.6 (48.1 to 74.2)	0.44 (0.26 to 0.75)
Durvalumab	38/67 (56.7)	6.3 (3.7 to 11.2)	33.9 (21.2 to 47.1)	-



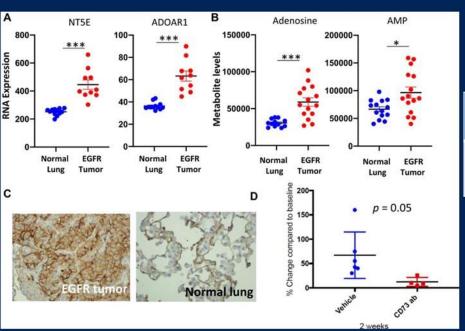
NeoCOAST: Study design and objectives

Endpoints:


- Primary: MPR rate (proportion of patients with ≤10% residual viable tumor cells in resected tumor specimen and sampled nodes at surgery) per investigator assessment.
- Secondary: pCR rate (no viable tumor cells in resected tumor specimen or sampled nodes at surgery), safety and tolerability, feasibility of planned surgery, pharmacokinetics, and immunogenicity.
- Exploratory: Tumor, blood, and stool microbiome biomarkers; investigator-assessed best overall response and ORR (per RECIST v1.1).

NeoCOAST-2: Study design

- NeoCOAST-2 (NCT05061550) is a phase 2, randomized study of neoadjuvant durva combined with chemo and either ole or mona, followed by surgery and adjuvant durva plus ole or mona, in patients with resectable, Stage IIA–IIIA NSCLC.¹
 - Primary endpoints: pCR, safety and tolerability
 - Secondary endpoints: EFS, DFS, OS, and ORR per RECIST v1.1; MPR; feasibility of surgery; pharmacokinetics; immunogenicity; baseline tumor PD-L1 expression; changes in ctDNA
 - Recruitment initiated in January 2022.



Cascone T, et al. AACR 2022 (poster CT124).

EGFR +ve NSCLC and Adenosine Pathway

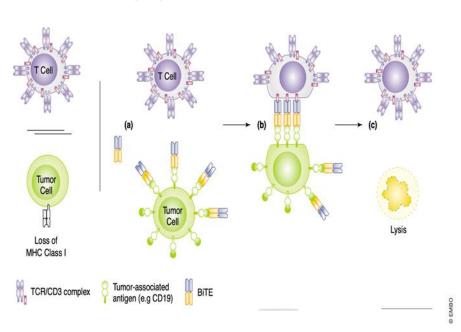
Shirish Gadgeel, ASCO 2022

Oleclumab and Durvalumab in EGFR +ve NSCLC. N=42

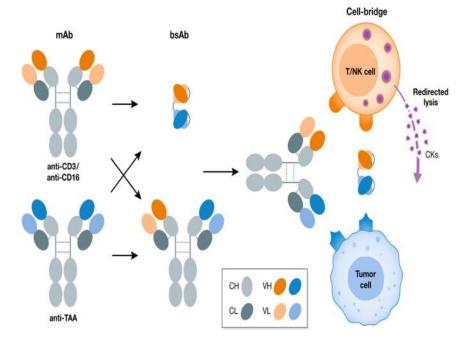
RR	DOR	PFS
9.5%	14.8 mo (95% CI- 5.6-24.0)	1.8 mo (95% CI- 1.7-1.9)

Le, et al, J Thorac Oncol 2021

Bendell, et al, ASCO 2021

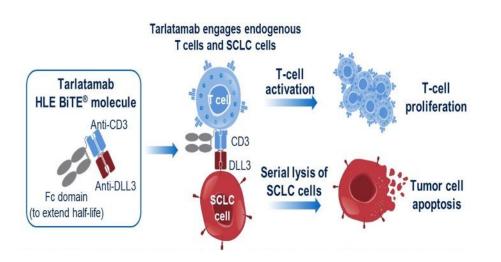

Turning on the "gas" – targeting co-stimulatory receptors

Co-stimulatory receptors			
GITR SITE	Promotes activation and proliferation of effector T cells and a reduction in T_{reg} cells	Phase II trials ongoing	TRX518, BMS-986156
OX40 OX40L	Promotes survival, but not priming, of both effector and memory T cells	Phase II trials ongoing	GSK3174998, MEDI6469, PF-04518600
4-18B 4-18BL	Promotes T cell proliferation and mitochondrial function and biogenesis	Phase I trials ongoing	Utomilumab, urelumab
ICOS ICOSL	Promotes TCR co-stimulation and T_{reg} cell stimulation	Phase I trials ongoing	Vopratelimab, KY1044, GSK3359609



Bispecific Compounds

Bi Tcell Engagers


Bispecific Antibodies

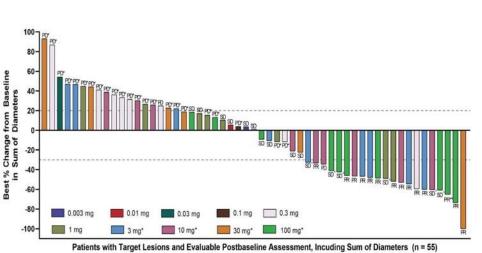
EMBO Mol Med 2021

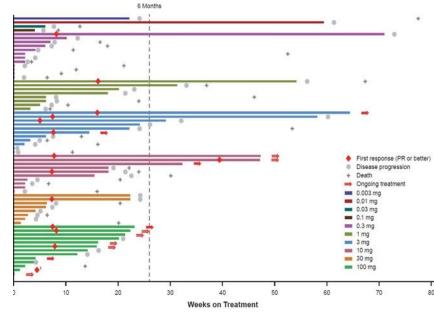
BiTEs in Lung Cancer – Tarlatamab in SCLC

Phase I in pretreated SCLC

N=66

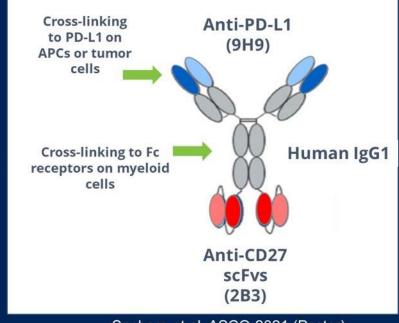
CRS (mostly gr 1,2) in 44%


DLT gr 5 pneumonitis, gr 3 encephalopathy


Ongoing studies with chemotherapy 1L, single agent 3rd line+

Activity seen across a range of doses

ORR 20-22%, Median duration of response 8.7 months



Owonikoko ASCO 2021

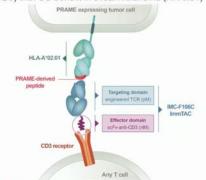
Dual-Immunomodulator Bispecific Antibodies

Example: CDX527

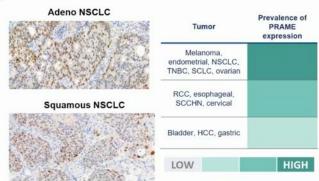
- 2 checkpoint inhibitor targets
 - PD(L)-1, CTLA-4, Lag-3, TIM-3, TGFβ
- Agonistic antibodies to costimulatory targets
 - CD27, CD28, OX-40, ...

Sanborn et al, ASCO 2021 (Poster)

Sanborn ASCO 2022

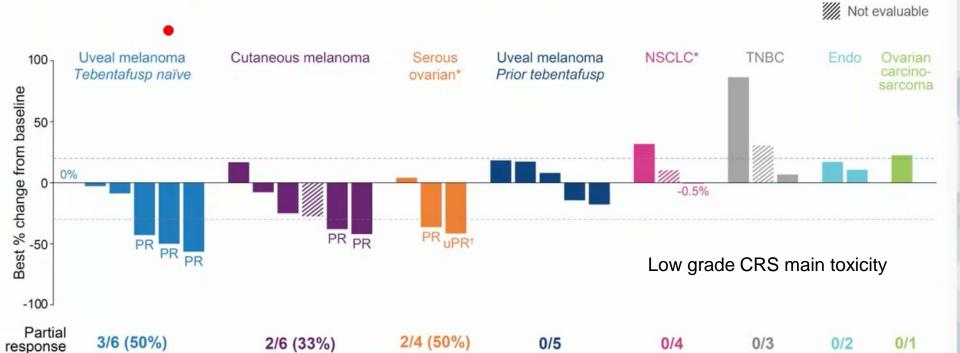

Phase 1 dose escalation of IMC-F106C, the first PRAME × CD3 ImmTAC bispecific protein in solid tumors

Omid Hamid, ¹ Takami Sato, ² Diwakar Davar, ³ Margaret Callahan, ⁴ Fiona Thistlethwaite, ⁵ Raid Aljumaily, ⁶ Melissa Johnson, ⁷ Hendrik-Tobias Arkenau, ⁸ Ecaterina Dumbrava, ⁸ Benjamin Izar, ¹⁰ Hui Amy Chen, ¹¹ Shannon Marshall, ¹² Yuan Yuan, ¹² Mugdha Deo, ¹² Sarah Stanhope, ¹² Laura Collins, ¹² Renee Mundy, ¹² Shaad Abdullah, ¹² Juanita Lopez ¹³


The Angeles Clinic and Research Institute, A Codans-Sina Affiliate, Los Angeles, CA, US, "Thomas Jefferson University Hospital," Phaladelphia, PA, US, "UPMAC Hillman Cancer Center, Pittsburgh, PA, US, "Memorial Stoan Kettering Cancer Center, New York, NY, US, "The Christe NHS Toundation Trust and University of Manchester, Manchester, UN, "University of Oklahoma Poggy and Charles Stephenson Cancer Center, Oklahoma Gly, CK, US, "Sanh Cannon Research Institute, Nashville, TN, US, "Sanh Cannon Research Institute, London, UK, "MD Anderson Cancer Center, Houston, TX, US," "Columbia University Medical Center, New York, NY, US, "University of Caldisma Davis Comprehensive Cancer Center, Sacramento, CA, US, "Pirmanocore Ltd., Abingdon, UK, "The Rayal Mended NHS Foundation Trust and Institute of Cancer Research: Suction UK

IMC-F106C: ImmTAC targeting HLA-A2-presented peptide from PRAME (PRAME × CD3)

- TCR bispedific proteins redirect polyclonal T cells to target intra- or extra-cellular cancer proteins (>90% of proteome)
- ImmTAC molecules are validated by tebentafusp (gp100 × CD3) with OS benefit in uveal melanoma (HR 0.51)¹


PRAME: most broadly expressed cancer-testis antigen in several tumor types but with minimal normal tissue expression

ImmTAC, Immune mobilizing T cell receptor Against Cancer; TCR, T cell receptor 1. Nathan P. et al. N Engl J Med 2021;385:1196-206;

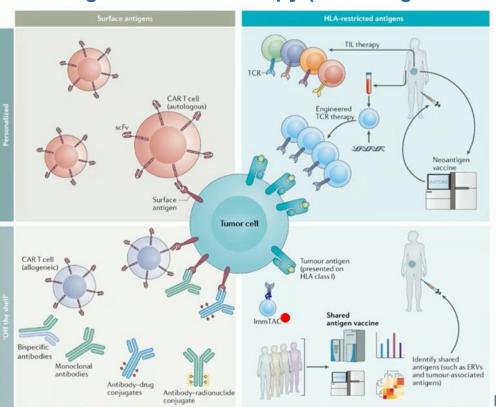
Responses observed in multiple tumor types

^{*} Two patients (1 with NSCLC, 1 serous ovarian) discontinued treatment due to PD with scan data not available at DCO

Two PRAME-negative patients both had PD (not shown)

Endo, endometrial carcinoma; NSCLC, non small cell lung carcinoma; TNBC, triple-negative breast cancer;

Hamid ESMO 2022


PRAME expression[‡] Positive

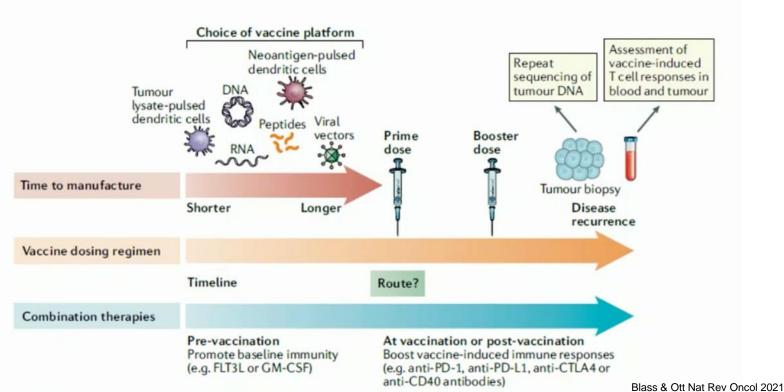
[†] Ovarian cancer patient with unconfirmed PR (uPR) remains on treatment and eligible for confirmation

[‡] PRAME expression assessed by IHC H-score

Many strategies for antigen-directed therapy ("Steering the car")

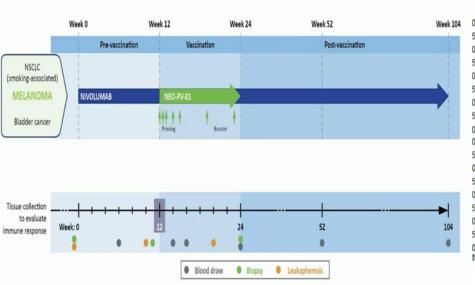
e.g. CAR-T targeting mesothelin

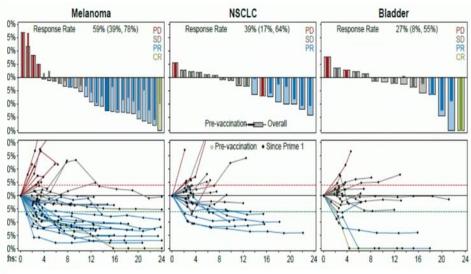
TILs – expanded or engineered


Creelan et al lovance etc

Non personalized, Personalized vaccines

> Braun Nat Rev Clin Oncol 2021 Braun ESMO 2022


Vaccines – timing, dosing, combinations...

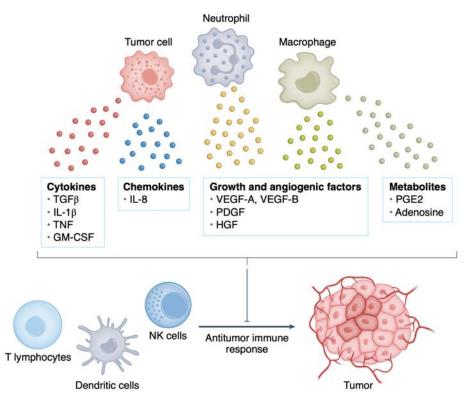


Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

NT-001: Personalized peptide vaccine (PV-01) + Nivolumab in metastatic patients (melanoma, NSCLC, and urothelial cancer)

Ott Cell 2020

Snapshot of ongoing personalized cancer vaccine studies


NCT	Phase	Agent	Tumor Types	Targets
NCT03953235	I/II	GRT-C903/GRT-R904	Multiple including NSCLC	BRAF, ERBB2, KRAS, NRAS, TP53, others
NCT05195619	lb	PEP-DC	NSCLC	Autologous dendritic cell with personalized peptides
NCT04266730		PANDA-VAC	Multiple including NSCLC	6 personalized neoantigens + Pembro
NCT04397003	II	Polyepitope DNA via electroporation	SCLC	Personalized neoantigen DNA vaccine + Durva
NCT05269381		PNeoVCA (IV)	Numerous including NSCLC	Personalized neoantigen peptide +Pembrolizumab

Cytokines, chemokines, metabolomics...

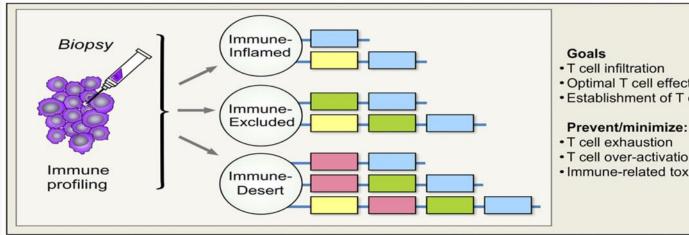
Ott 2022

Promoting T cell infiltration and Function

Prime/expand T cells

- Oncolytic viruses
- STING/TLR agonists
- Radiation
- Chemotherapy
- Vaccines
- · Adoptive cell therapy

Overcome T cell exclusion


- Oncogenic pathway inhibitors
- Anti-VEGE
- TGF-β inhibitors

Modulate T cells

- Checkpoint inhibitors
- Co-stimulatory agonists
- Cytokines

Reverse immunosuppression

- TGF-β inhibitors
- Chemotherapy
- Targeted therapies

- Optimal T cell effector activity
- Establishment of T cell memory

- T cell over-activation and apoptosis
- Immune-related toxicities

To Sum Up...

Many promising directions in many areas, ongoing combinations

Still need greater translation understanding of the who, what, when and how to use our new strategies

Thank you!

